12 research outputs found

    Evaluation of chloroform/methanol extraction to facilitate the study of membrane proteins of non-model plants

    Get PDF
    Membrane proteins are of great interest to plant physiologists because of their important function in many physiological processes. However, their study is hampered by their low abundance and poor solubility in aqueous buffers. Proteomics studies of non-model plants are generally restricted to gel-based methods. Unfortunately, all gel-based techniques for membrane proteomics lack resolving power. Therefore, a very stringent enrichment method is needed before protein separation. In this study, protein extraction in a mixture of chloroform and methanol in combination with gel electrophoresis is evaluated as a method to study membrane proteins in non-model plants. Benefits as well as disadvantages of the method are discussed. To demonstrate the pitfalls of working with non-model plants and to give a proof of principle, the method was first applied to whole leaves of the model plant Arabidopsis. Subsequently, a comparison with proteins extracted from leaves of the non-model plant, banana, was made. To estimate the tissue and organelle specificity of the method, it was also applied on banana meristems. Abundant membrane or lipid-associated proteins could be identified in both tissues, with the leaf extract yielding a higher number of membrane proteins

    Recent advancement in modern genomic tools for adaptation of Lablab purpureus L to biotic and abiotic stresses: present mechanisms and future adaptations

    No full text
    Not AvailableHyacinth bean is an important traditional plant with substantial medicinal value. Being imperative, it is still less explored crop on genomic and transcriptomic scale that has indexed it as an ā€œorphanā€ crop for its genome revolution. Among different crop legumes such as pigeon pea, chickpea, cowpea, soybean and common bean, hyacinth bean also serves as a significant source of nutrition for both tropical and temperate regions and execute an imperative function in fixing biological nitrogen in agriculture. Nonetheless, the productivity of hyacinth bean is restrained due to environmental and biotic cues. Thus, understanding of the genomic functions and identification of probable genes/proteins for major agronomic traits through transcriptomic approaches has become imperative to improve stress tolerance in hyacinth bean. For understanding the plant stress tolerance mechanisms, the deployment of functional genomics approaches viz., proteomics and metabolomics have become imperious in breeding programs in developing countries. These approaches have been successfully used in other legume crops to create protein reference maps and their exploitation through comparative approaches can greatly enhance the research and understanding of hyacinth bean biological processes to changing environmental conditions. In this review, emerging epigenomics, proteomics, metabolomics and phenomics approaches and their achievements both in model/crop legumes are discussed. Additionally, the review also provides an overview of the applications of advanced proteomics, metabolomics and next-generation sequencing technologies in the discovery of candidate biomarkers for the development of agronomically refined hyacinth bean which may further ensure food and nutritional security under adverse climacteric conditions in developing countries.Not Availabl

    Mechanisms of Resistance to Herbicides

    No full text
    corecore